

Imaging Facility Biotechnology Resource Center Cornell University BRC_Imaging@cornell.edu

Fluorescence Correlation Spectroscopy, FCS (i880)

FCS is a method for analyzing the signal intensity fluctuations from a stationary focused laser spot. An FCS autocorrelation curve analysis can give you information about the concentration, diffusion and binding of fluorescent molecules in solution.

Setting up a Dye-in-Solution Sample

- 1. Prepare calibration dye (Rhodamine Green or any of the Alexa dyes) by dissolving in a water/buffer solution. Dilute down such that the concentration is around 2 nM.
- 2. Put dye in a no. 1.5 glass-bottom dish or in a 6-/8- well Nunc chamber coverglass.
- 3. Start Zen system in standard way. Turn on appropriate laser. Use 488 nm laser if imaging Rhodamine Green.
- 4. Use the 40X C-Apochromat 1.2 NA water immersion lens.
- 5. After doing the steps outlined below, follow the same procedure for your sample dye.

Focusing Sample

- Start with objective in the lowest position and focus up until the immersion water just makes contact with the coverglass.
- 2. In the Acquisition tab, use reflected laser light off the coverglass to position the focus.
- 3. In the *Light Path* menu, setup reflected light path. Use the T80/R20 MBS and check the "Reflection" box.
- 4. In the *Acquisition Mode* menu, change *Scan Mode* to *Line* and set a scan speed of around 9.

Light path configuration for Reflected light (Dichroic: MBS T80/R20)

Set averaging to one (1), bit depth to 8, and frame size to 512 by 1 for fast line scanning.

- 5. In the *Channels* tab, close the pinhole to 1AU to help reduce reflected light.
- 6. Use low laser power and decrease gain as needed.
- 7. Start with objective in the load position and focus up until the immersion water just makes contact with the coverglass.

THE REAL PROPERTY OF	Mode				Show all
Objective	CApoc	tiromat 40x	1 20 W Ko	er M27	
Scan Mode	Une				
Frame Size	X 512	1	X*Y	Y 🛛	
					Optimal
Speed	_			917	Max
Pixel Dwell	1.60 µsec	Scan Tir	me 1.92 r	nsec	
Averaging					
Number	1		Bit Dep	th BB	•
Mode	Line	•	Directio	m 📼	
Method	Mean	-			
HOR					
Scan Area					
		Image Sta	te: 212.1	µm x 0.0	μm
		Pixel Size	E 0.42	um	
			_1	0.0	12 6
		I -	_1	0.0	12 12
		⊕ _		0.0	12 10
		Zoom 1		10	12 17
					Reset All
					Reset All

Fast line scanning acquisition parameters

8. Start the line scan (*Live*) after the water makes contact. The line profile should look similar to the profile shown below.

Line profile when focus is away from coverglass/sample

9. Start to move the focus up. When the first interface of the coverglass is reached, a spike in intensity will be seen. Make sure to adjust gain/laser power to avoid saturation. This interface is between the immersion water and the coverglass.

Line profile when focus is at coverglass interface

- 10. Continue to move focus up towards sample. The intensity will drop back down. The focus is now in the coverglass.
- 11. Move focus up slowly. Another spike in intensity will be seen at the second interface of the coverglass.
- 12. After the second spike, the focus should be moved such the intensity from the second spike just returns to the base level. At this point, the focus is just beyond the coverslip in the sample.
- 13.Open the focus menu. Click on *Manually* to set position to zero. Set the step size set to 200 um. Use the Step Size up arrow to move an additional 200um into the sample. The focus should now be completely in the dye solution.

Focus adjustment and Zeroing Position

FCS Setup

- 1. Go to FCS tab.
- 2. Under *Light Path*, set up beam path configuration. You can use either ChS/Ch 2 or the BiG detectors.
- Choose the excitation laser under the "Visible Light" button. The correct MBS for the chosen laser line can be selected from the MBS button.

FCS tool tab

Count Rate

 Select the count rate button to view how much fluorescence is reaching the detector based on the beam path setup and the amount of laser used.

There are three options in the count rate menu:

- a. Count Rate
- b. Correlation
- c. Counts per Molecule (CPM)
- The readout of the system is displayed in kHz (photons/sec). This gives a measure of how much fluorescence is coming back from the sample based on the beam path used.

It is ideal to keep the count rate **under 500 kHz** to avoid any saturation or damage to the detector.

Count Rate ×
99.0
Unit Hz KHz Average Off 1 s 3 s 10 s Display Count rate Correlation CPM
Count Rate read out in KHz

3. Adjust laser power for ~5-10 kHz (usually ~1% laser power, acquisition tab).

4. The Correlation button gives information on whether the system detects any moving molecules in the sample.

> If the average value is **above 1.0**, then the observed moving fluorophores are correlating.

FCS Correlation button

5. The CPM button in the Count Rate menu signifies the quality of the sample for FCS. It is a direct measure of the amount of fluorescence per molecule the system detects (the signalto-noise of the sample). The average CPM represents the Counts per Second per Molecule. A reasonable number for this value would be in the range of **1kHz - 15kHz**.

ount Rate	-1	.66	6
	Hz NHz Count rate	Average Off Correlation	1 5 3 5 10 5 CPM
		Close	ecule) button

- If the count rate value is high and the CPM value is low (below 1kHz CPM), this indicates the sample is too concentrated for FCS.
- With the CPM menu open, try to adjust the correction collar of the objective to maximize the CPM value. This process corrects for any variation in the coverglass thickness.

Pinhole Alignment

- 1. Open the FCS Light Path Menu and select the Adjust Pinhole button at the bottom right hand corner.
- 2. The pinhole adjust menu will give the data of the last adjustment for the current beam path and will give the current pinhole size and position. Make sure the pinhole is at 1AU before starting the adjustment.
- 3. There are 2 options of the pinhole alignment: Coarse and Fine. Let it automatically adjust the pinhole for X and Y by first selecting Coarse for X and Y. Select Fine for X and Y after coarse adjustment.

Coarse and Fine Pinhole Adjustment tool

• *Coarse* alignment will move the pinhole over the entire travel range looking for a maximum count rate value.

• *Fine* adjustment covers a smaller travel range with finer movement looking for the peak count rate.

Fine Adjustment Gaussian Profile

4. Important: After the pinhole alignment has been run, check the CPM and if needed, adjust the correction collar of the objective again.

Data Acquisition

1. In the FCS *Acquisition* menu, set the measurement time for 10 sec with 10 repetitions. Leave the pupil filling at 100%.

FCS Acquisition Parameters

2. Click the Start Experiment button in the FCS tab. This will open a new window that will show the count rate as a function of time and will show the resulting correlation curve and data table.

			and the second		ala and	andratic a	interes a	-	nie oppos			Count Rate vs T plot
												Autocorrelation
												Autocorrelation
Tellin Dem	1	t soor	Chartene -		Course per			Tiglet date Field-after (see	Camponent Friedram	1 Congonent 1 Officere Tree	1 Transistion Mitchical parage	Autocorrelation
Eate	1. 1. 17:1-26	L SUM	Chartenter (Pres) 71.263		Courts per residence (#10) 4.402	Arrige Radie Nacht an gestiche 12.807		Trajer exte	Component Frederic Pel 100 866	1 Component1 Diffusion trea (ref 20.211		Autocorrelation
Date 4/15/2013 4/16/2013	1000 171125 171136	L SUITE	Chart star 1 (res)	Covered(17 1.063 1.364	Courtes per residence (#12) 4 #23 # #38	Aropa Kado Interspector 15.007 16.002		Tiglet date Field-state (see	Component Frankisk 196 100 800 100 800	Companient Diffusion tree Set 30.211 STORE		Autocorrelation
Eate	Tem	L SOUTH	Chartene 1 (#41) 71.263 68.293	Connella	Courts per residence (#10) 4.402	Avopa Racke Intersport participa + 0.007 + 0.000 19.011 + 0.49		Tiglet date Field-state (see	Companyet Franksa 1981 1080 2080 1080 2080 1080 2080 1080 2080	Congotetti Colour tra Url 20.211 20.211 21.00 21.147 17.912		
Date 4/190013 8/190013 8/190013 4/190013 8/190013	Tem 17:41:28 17:11:38 17:11:38 17:11:38 17:11:38 17:11:38	1 2000 Angertar 	Chartente PTE 71.263 88.945 88.622 75.343 76.163	1003 1364 1361 1367 1363	Countin per resistante perezi 4.402 4.612 4.712 4.712 4.712 4.618	Avrep: 16,004 16,017 (01 parts 107 16,007 16,007 16,007 16,007 16,001		Tiglet date Field-state (see	Component Freedom (%) 100 808 100 808 100 808 100 808 100 808	Consuments Colours the Unit Unit State Sta		Data Table
Date 4/190013 8/160013 4/190013 4/190013 4/190013 4/190013	Tase 17:11:28 17:11:38 17:11:38 17:11:38 17:11:38 17:11:38	E DEED Fauerlist 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Chartenter (#41) 71.263 88.295 88.622 73.313 76.163 74.384	1003 1364 1007 1007 1001 1001	Constitu per version per energi 4 403 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Avega 1.404 16.419 A 7 gasta 147 16.807 16.807 16.801 14.949 16.801 16.976		Tiglet date Field-state (see	Camponett Freeken 196 100 800 100 800 100 800 100 800 100 800	Components Cofficient Stee Unit 20.211 20.007 22.147 17.052 23.157 21.054		
Date 415(2013 475(2013 475(2013 475(2013 475(2013 475(2013 475(2013	Tem 17:41:28 17:11:38 17:11:38 17:11:38 17:11:38 17:11:38	E BARRET T T T T T T T T	Chartente PTE 71.263 88.945 88.622 75.343 76.163	1003 1364 1361 1367 1363	Countin per resistante perezi 4.402 4.612 4.712 4.712 4.712 4.618	Avrep: 16,004 16,017 (01 parts 107 16,007 16,007 16,007 16,007 16,001		Tiglet date Field-state (see	Component Freedom (%) 100 808 100 808 100 808 100 808 100 808	Consuments Colours the Unit Unit State Sta		
Date 41190010 41190010 41190010 41190010 41190010 41190010 41190010 41190010 41190010	Tase 17:11:28 17:11:28 17:11:28 17:11:28 17:11:28 17:12:38 17:12:38 17:12:38	E DERET Fragerillar I I I I I I I I I I I I I I I I I I I	Chartenter (#41) 71.263 88.295 88.622 73.313 76.163 74.384	1003 1364 1007 1007 1001 1001 1001	Constitution (1995) 4 403 4 40 4 40	Avapir Bucke 15.007 + 8.000 16.001 14.049 18.001 18.001 18.001 18.001 18.001 18.001		Tiglet date Field-after (see	Component Franker 746 100 866 100 866 100 868 100 868 100 868 100 869 100 869	5 Component 1 Colours tone (e4) 20.211 20.047 20.147 20.147 21.167 21.167 21.167 21.167 21.167		Data Table

Data Fitting

- 1. An Average correlation curve can be created by excluding repetitions (simply uncheck the box next to the repetition). Once the average has been created, the data can be analyzed.
- 2. Go to *Fit* (tab on left of viewing panel). Move orange line to ~1 usec. (Afterpulsing causes artifacts below this timescale.)

- 3. Choose your fit model (probably 1 comp) and click Fit All.

Typically, in a well-aligned system the structure parameter can be fixed to a value between 5 and 7 before fitting. The structure parameter is the ratio of the axial resolution to the radial resolution. If the fit is good, then the graph in the fit deviation window (the residuals) should not have many sequential points about zero and should look like a random distribution of points about zero. It is up to the end user to determine what a good fit is and what is not.

4. Rhodamine Green should exhibit a $\tau D \sim 30 \mu sec$ with 40x/1.2 water objective.